PII: S0960-894X(97)00394-6

STRUCTURE-BASED DESIGN OF NON-PEPTIDIC PYRIDONE ALDEHYDES AS INHIBITORS OF INTERLEUKIN-1β CONVERTING ENZYME.

Julian M. C. Golec,*§, Michael D. Mullican,*† Mark A. Murcko,† Keith P. Wilson,† David P. Kay,§ Stuart D. Jones,§ Robert Murdoch,§ Guy W. Bemis,† Scott A. Raybuck,† Yu-Ping Luong,† and David J. Livingston†

† Vertex Pharmaceuticals Inc., 130 Waverly Street, Cambridge MA, USA 02139-4211 § Roussel Laboratories Ltd., Kingfisher Drive, Swindon, UK SN3 5BZa

Abstract. Pyridone derivatives, especially with 6-aryl substituents, have been shown to be useful P2-P3 peptidomimetic scaffolds for the design of potent inhibitors of ICE. © 1997 Elsevier Science Ltd.

Interleukin-1 β (IL-1 β) is an important mediator in inflammatory and infectious diseases. Interleukin-1 β converting enzyme (ICE; caspase-1), which cleaves its substrates at aspartic acid, converts the inactive form of IL-1 β to its mature form.^{2,3} Thus, ICE offers an opportunity for the development of small molecules able to disrupt specifically the production of this cytokine as novel antiinflammatory agents. Prototype ICE inhibitors have been shown to block type II collagen induced arthritis in mice, acute inflammation and pyrexia. ^{4,5} ICE-deficient mice are resistant to endotoxic shock, showing reduced secretion of IL-1 α as well as IL-1 β .6 Recently, ICE has been shown to activate IGIF, a potent inducer of interferon- γ (IFN- γ). 7 Mice lac ng IFN- γ or its receptor are also resisitant to endotoxic shock indicating that ICE may have additional mechanisms by which it may exert proinflammatory effects.^{7,8} Although, a number of peptide-based ICE inhibitors have been reported, these compounds are likely to suffer from poor oral bioavailability and rapid clearance.⁹

The results of N-methyl scans ¹⁰ and X-ray crystallography data of ICE complexed with inhibitors ¹¹ revealed that ICE binds substrates and active site inhibitors through hydrogen bonds between the enzyme backbone and P₁-NH, P₃-NH, and P₃ C=O in a manner similar to serine proteases of the chymotrypsin superfamily. By substituting the P₃ amino acid with a pyridone or pyrimidone containing lipophilic groups at the 6-position to access the S₂ pocket, researchers at Zeneca converted a peptide-based inhibitor of elastase into a series of potent inhibitors with little peptidic character. ¹² In direct analogy to the elastase inhibitors 1 and 2, a series of pyrimidone and pyridone based ICE inhibitors 3 has been reported. ¹³ We report the results of our exploration of the S₂ pocket in ICE from the 6-position of the 3-aminopyrid-2-ones.

^aCurrent addresses: Julian M. C. Golec, Xenova Ltd., 240 Bath Road, Slough, Berkshire, SL1 4EF UK. David P. Kay, Biocompatibles Ltd., Frensham House, Farnham Business Park, Weydon Lane, Farnham, Surrey, GU9 8QL, UK. Robert Murdoch, Receptor Research Ltd., Unit 5 Cory Close, Wainhouse Corner, Bude, Cornwall, EX23 0AR, UK Stuart D. Jones, Proteus Molecular Design Ltd., Proteus House, Lyme Green, Business Park, Macclesfield, Cheshire, SK11 0JL, UK.

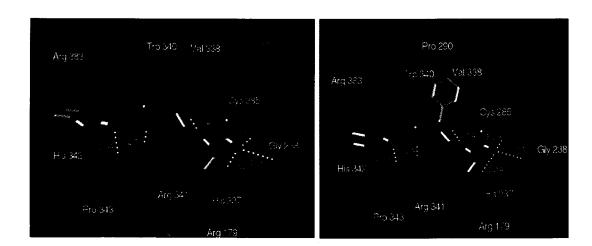
Our investigation of the peptidomimetic inhibitors was based on the tetrapeptide aldehyde ICE inhibitor 4 reported by scientists at Merck. 14 The sixfold loss in potency caused by replacement of the acetyl-tyrosine group at P4 by dihydrocinnamate (DCA) to give 5, was acceptable because it simplified the synthesis of new compounds. This group was adopted as our P4 standard. In the case of pyridone-based elastase inhibitors replacement of P3-Ala and P2-Pro with the pyridone-glycine peptidomimetic resulted in only 13-fold loss of potency. 12 However, in ICE, replacement of the P3-Val and P2-Ala with pyridone-glycine peptidomimetic results in a dramatic 90-fold drop in enzyme potency (5 to 8). The resulting compound 8 has a K_i of 4.8 μ M. Comparison of the peptides 6 and 7 suggested that replacement of the P2-Gly in 8 with alanine should result in a significant improvement in enzyme potency. In fact, this change resulted in a 32-fold increase in potency (compound 9; $K_i = 150$ nM).

Table 1. Inhibitory Activity of Pyridones and against Interleukin-1 β Converting Enzyme.

Compound	R ¹	R ²	R ³	K _i (nM) ICE ^a
8	Н	Н	DCAb	4800
9	(S)-CH3	H	DCA	150
10	Н	Ph	DCA	900
11	Н	CH ₂ Ph	DCA	150
12	Н	CH ₂ CH ₂ Ph	DCA	1200
13	Н	CH3	DCA	3500
14	Н	<i>n-</i> Bu	DCA	1000
15	(R,S)-CH3	CH ₂ Ph	DCA	970
16	H	CH ₂ Ph_	Ac-Tyr	54

4	Ac-Tyr-Val-Ala-Asp-H	9
5	DCA-Val-Ala-Asp-H ^c	54
6	Cbz-Val-Ala-Asp-H	55
7	Cbz-Val-Gly-Asp-H	1300

^aMethod reported in ref 10a. ^bDCA = dihydrocinnamoyl. ^cPrepared in ref 10a.


To aid in the design of more potent compounds, we wished to determine the bound conformation of the pyridone-glycine scaffold. However, we were unable to obtain crystals of the complex of ICE and compound 9. To circumvent this problem the irreversible compound 8a (Scheme 1), a direct analog of aldehyde 8, was prepared and formed diffraction-quality crystals with ICE. 15 The crystal structure confirmed the irreversible nature of 8a, Figure 1. The sulfur of Cys^{285} of ICE displaces the dichlorobenzoate group and forms a covalent bond with the methyl ketone. The P_1 carbonyl oxygen of 8a is bound in the oxyanion hole, formed by the backbone nitrogens of Cys^{285} and Gly^{238} . The position of the carbonyl oxygen is different from that observed for the thioacetal hydroxy group of the aldehyde structure of 4. As a result of this interaction, 8a is shifted ca. 1 Å toward the active site cysteine and P_1 Asp side chain enters the S_1 subsite from a different angle from that observed for 4.11a However, the positioning of P_2 - P_4 and the corresponding hydrogen bonds were relatively unaffected compared to the bound structure of compound 4.11 Examination of the bound structure 8a

suggested it should be possible to access a lipophilic pocket near S2 with a benzyl or phenethyl off of the 6-position of the pyridone ring. This pocket is defined by residues Trp³⁴⁰, Val³³⁸, and Pro²⁹⁰. The 6-phenyl (10), 6-benzyl (11), and 6-phenethyl (12) compounds were prepared. The 6-benzyl compound 11 (K_i = 150 nM) is 32-fold more potent than the unsubstituted compound 8. The 6-phenyl compound 10 and the 6-phenethyl compound 12 are only four- to fivefold more potent than the unsubstituted compound 8. The 6-methyl (13) and 6-*n*-butyl (14) compounds were also prepared. The methyl compound 13 is essentially equipotent to 8, whereas the 6-*n*-butyl compound 14 is 4 to 5-fold more active than 8. The modest improvement in enzyme potency with the introduction of a 6-phenyl (11) compared to the 6-methyl (13) is also seen in a set of pyrimidone-based irreversible inhibitors. ¹³ The combination of the P2 alanine of compound 9 with the 6-benzyl substituent of 12 to produce compound 15 resulted in a modest loss of enzyme potency. Molecular modeling studies indicate that steric interactions between the P2 alanine and 6-benzyl substituent hinder compound 15 from adopting the necessary binding conformation. Recently, similar SAR was reported for pyridone-based inhibitors with phenoxymethylketone as the P' warhead. ^{13a}

To confirm the interaction of the benzyl substituent with the S₂ pocket we sought to solve the X-ray crystal structure of 11. As seen with compound 9, the aldehyde 11 would not crystallize with ICE. However, its irreversible analog 11a (Scheme 1) readily crystallized, Figure 2. The bound conformation of the pyridone-glycine dipeptidomimetic of 11a is identical to 8a and the 6-benzyl substituent of 11a interacts with the residues of the S₂ pocket as predicted. ¹⁶

Figure 1. Crystal Structure of 8a bound to ICE. a

Figure 2. Crystal Structure of 11a bound to ICE.a

^a The inhibitor **8a** and **11a** (liqourice bonds) are colored by atom type with oxygen red, nitrogen blue, carbon green, and sulphur yellow. Hydrogen bonds between compound **8a/11a** and the enzyme referred to in the text are shown as dashed lines.

Synthesis of Pyridone-Based ICE Inhibitors 17

The pyridones 8–16 in Table 1 were prepared by the procedure in Scheme 1. Alkylation of 17 with methyl bromoacetate and NaH gave 18 in 67-97%. Removal of the Cbz of 18 and coupling the resulting amine with dihydrocinnamyl chloride or with Ac-Tyr-(OBn)-OH gave 19. Saponification of 19 gave the fully functionalized scaffold 20. In situ removal of the Alloc group of 22 and coupling with 20 following the method of Chapman 19 gave the benzyl protected aspartic acid aldehydes 23. Deprotection with H₂ and 10% Pd/C gave the desired products 8–16. The irreversible inhibitors 8a and 11a were prepared in a similar manner by coupling 20 to 24 giving t-butyl ester 25.20 Deprotection of 25 with TFA/CH₂Cl₂ gave the 8a and 11a.

Scheme 1. Synthesis of Pyridone-Based ICE Inhibitors.^a

Cbz.
$$\frac{1}{N}$$
 $\frac{1}{N}$ $\frac{1}{N}$

a The generic groups R¹, R², and R³ are defined in Table 1. Reagents: (a) 80% oil dispersion of NaH, BrCH₂CO₂Me or (R) CF₃SO₃CH(CH₃)CO₂Me, THF; (b) 1 atm. H₂, 10% Pd/C, MeOH; (c) PhCH₂CH₂COCl, NaHCO₃, dioxane or Ac-Tyr(OBn)-OH, DIEA, HBTU, DMF; (d) 1 N NaOH (aq), MeOH; (e) (i) Bu₃SnH, cat. (Ph₃P)₂PdCl₂, DMF, CH₂Cl₂, 5 min; (ii) HOBt, EDC, 0-20 °C, 18 h; (f) (i) 20, HOBt, EDC, 25 min; (ii) cat. (Ph₃P)₂PdCl₂, 24, Bu₃SnH, THF; (g) TFA, CH₂Cl₂.

Conclusions

A pyridone-based peptidomimetic was found to be a suitable replacement for P₂-P₃ found in peptide-based ICE inhibitors. X-ray crystallographic and molecular modeling studies were used to improve the potency of the pyridone-based ICE inhibitors. A prototype pyridone-based peptidomimetic 8 was found to be 90-fold less active than its corresponding peptide 5. Rigidification of the inhibitor backbone of 8 by introduction of alanine at P₂ resulted in a 30-fold improvement in enzyme potency. The lipophilic S₂ pocket of ICE was

identified in the crystal structure of 8a bound to ICE. Substituents on the 6-position of the pyridone ring of 8 increased potency by filling the S_2 pocket. A 6-benzyl substituent on the pyridone ring (compound 11; $K_i = 150 \text{ nM}$) gives the optimal interaction with S_2 of ICE, resulting in a 30-fold increase in enzyme inhibition. The pyridone 11 is only threefold less active than its corresponding peptide-based inhibitor 5 and is less peptidyl in nature (i.e., 11 has two fewer chiral centers and one less peptide bond than 11).

Acknowledgement

We thank Beth Jarrett and Cameron Stuver for their assistance in development of the enzyme assay, Steve Chambers, John Fulgum, Ted Fox, Jo-Anne Sintchak, and John Thomson for providing recombinant ICE, David Lauffer for the synthesis of peptide 6, David Armistead and Daniel Elbaum for their suggestions on the manuscript.

References

- 1. Dinarello, C. A. Eur. Cytokine Netw. 1994, 5, 517.
- 2. For nomenclature of IČE-like enzymes, see: Alnemri, E. S.; Livingston, D. J.; Nicholson, D. W.; Salvesen, G.; Thornberry, N. A.; Wong, W. W. Cell 1996, 87, 171.
- Black, R. A.; Kronheim, S. R.; Sleath, P. R. FEBS Lett. 1989, 247, 386. Kostura, M. J.; Tocci, M. J.; Limiuco, G.; Chin, J.; Cameron, P.; Hillman, A. G.; Chartrain, N. A.; Schmidt, J. A. Proc. Natl. Acad. Sci. U.S.A. 1989, 86, 5227.
- 4. Ku, G.; Faust, T.; Lauffer, L. L.; Livingston, D. J.; Harding, M. W. Cytokine 1996, 8, 377.
- 5. Elford, P. R.; Révész, L.; MacKenzie, A. R. British J. Pharmacol. 1995, 115, 601.
- 6. (a) Kuida, K.; Lippke, J. A.; Ku, G.; Harding, M. W.; Livingston, D. J.; Su, M. S.-S.; Flavell, R. A. Science 1995, 267, 2000. (b) Li, P.; Allen, P.; Banjeree, S.; Franklin, S.; Herzog, L.; Johnston, C.; McDowell, J.; Paskind, M.; Rodman, L.; Salfield, J.; Towne, E.; Tracey, D.; Wardwell, S.; Wei, F.-Y.; Wong, W.; Kamen, R.; Seshadri, T. Cell 1995, 80, 401.
- (a) Gu, Y.; Kuida, K.; Tsutsui, H.; Ku, G.; Hsiao, K.; Okamura, H.; Nakanishi, K.; Kurimoto, M.; Tanimoto, T.; Flavell, R. A.; Sato, V.; Harding, M. W.; Livingson, D. J.; Su, M. S.-S. Science 1997, 275, 206. (b) Ghayur, T.; Banerjee, S.; Hugunin, M.; Butler, D.; Herzog, L.; Carter, A.; Quintal, L.; Sekut, L.; Talanian, R.; Paskind, M.; Wong, W.; Kamen, R.; Tracey, D.; Allen, H. Nature 386, 619.
- 8. (a) Dalton, D. K.; Pitts-Meek, S.; Keshav, S.; Figari, I. S.; Bradley, A.; Stewart, T.A. Science 1993, 259, 1739. Huang, S.; Hendriks, W.; Althage, A.; Hemmi, S.; Bluethmann, H.; Kamijo, R.; Vilcek, J.; Zinkernagel, R. M.; Aguet, M. ibid., 1742. Car, B. D.; Eng, V. M.; Schnyder, B.; Ozmen, L.; Huang, S.; Gallay, P.; Heumann, D.; Aguet, M.; Ryfell, B. J. Exp. Med. 1994, 170, 1437.
- 9. (a) For a reviews on the chemistry and biology of ICE inhibitors see: (a) Ator, M. A.; Dolle, R. E. Current Pharmaceutical Design 1995, I, 191. (b) Livingston, D. J. J. Cell Biochem.. 1997, 64, 19. (b) An example of an orally bioavailable, reversible ICE inhibitor containing a P2-P3 dipeptidomimetic was recently published: Dolle, R. E.; Prassad, C. V. C.; Prouty C. P.; Salvino, J. M.; Awad, M. M. A.; Schmidt, S. J.; Hoyer, D.; Ross, T. M.; Graybill, T. L.; Miller, R. E.; Helazek, C. T.; Ator, M. A. J. Med. Chem. 1997, 40, 1941.
- (a) Mullican, M. D.; Lauffer, D. J.; Gillespie, R. J.; Matharu, S. S.; Kay, D. P.; Porritt, G. M.; Evans, P. L.; Golec, J. M. C.; Murcko, M. A.; Luong, Y. -P.; Raybuck, S. A.; Livingston, D. J. Bioorg. Med. Chem. Lett. 1994, 4, 2359.
 (b) Dolle, R. E.; Singh, J.; Rinker, J.; Hoyer, D.; Prassad, C. V. C.; Graybill, T. L.; Salvino, J. M.; Helazek, C. T.; Miller, R. E.; Ator, M. A. J. Med. Chem. 1994, 37, 3863.
- (a) Wilson, K. P.; Black, J. F.; Thomson, J. A.; Kim, E. E.; Griffith, J. P.; Navia, M. A.; Murcko, M. A.; Chambers, S. P.; Aldape, R. A.; Raybuck, S. A.; Livingston, D. J. Nature 370, 270. (b) Walker, N.P.C.; Talanian, R. V.; Brady, K. D.; Dang, L. C.; Bump, N. J.; Ferenz, C. R.; Franklin, S.; Ghayur, T.; Hackett, M. C.; Hammill, L. D.; Herzog, L.; Hugunin, M.; Houy, W.; Mankovich, J. A.; McGuiness, L.; Orlewicz, E.; Paskind, M.; Pratt, C. A.; Reis, P.; Summani, A.; Terranova, M.; Welch, J. P.; Xiong, L.; Moller, A.; Tracey, D. E.; Kamen, R.; Wong, W. W. Cell 1994, 78, 343.
- 12. Brown, F. J.; Andisk, D. W.; Bernstein, P. R.; Bryant, C. B.; Ceccarelli, C.; Damewood, Jr., J. R.; Edwards, P. D.; Early, R. A.; Feeney, S.; Green, R. C.; Gomes, E. P.; Kosmider, B. J.; Krell, R. D.; Shaw, A.; Steelmam, G. B.; Thomas, R. M.; Vacek, E. P.; Veale, C. A.; Tuthill, P. A.; Warner, P.; Williams, J. C.; Wolanin, D. J.; Woolson, S. A. J. Med. Chem.. 1994, 37, 1259.

- (a) Dolle, R. E.; Prouty, C. P.; Prasad, C. V. C.; Cook, E.; Saha, A.; Ross, M. T.; Salvino, J. M.; Helzak, C. T.; Ator, M. A. J. Med. Chem. 1996, 39, 2438. (b) Semple, G.; Ashworth, D. M.; Baker, G. R.; Batt, A. R.; Baxter, A.J.; Benzies, D.W.M.; Elliot, L.H.; Evans, D.M.; Franklin, R.J.; Judson, P.; Jenkins, R.D.; Pitt, G. R.; Rooker, D. P.; Sheppard, A.; Szelke, M.; Yamamoto, S.; Isomura, Y. Bioorg. Med. Chem. Lett. 1997, 7, 1337.
- Thornberry, N. A.; Bull, H. G.; Calaycay, J. R.; Chapman, K. T.; Howard, A. D.; Kostura, M. J.; Miller, D. K.; Molineaux, S. M.; Weidner, J. R.; Aunins, J.; Elliston, K. O.; Ayala, J. M.; Casano, F. J.; Chin, J.; Ding, G. J. -F.; Egger, L. A.; Gaffney, E. P.; Limjuco, G.; Palyha, O. C.; Raju, S. M.; Rolando, A. M.; Salley, J. P.; Yamin, T. -T.; Lee, T.D.; Shively, J. E.; MacCross, M.; Mumford, R. A.; Schmidt, J. A.; Tocci, M. J. Nature 1992, 356, 786.
- 15. Crystals of compound **8a** inhibited ICE were grown by vapor diffusion. Protein complex (12 mg/mL in 50 mM citrate, 2.0 mM DTT, pH 6.5) was mixed (6 mL:3 mL) with reservoir (15% PEG 4K, 400 mM LiSO4, 200 mM sodium HEPES, 5 mM sodium cacodylate, 0.5% beta-octyl glucoside, pH 7.0) and allowed to stand over the reservoir solution at 4 °C. A single crystal was mounted directly into a glass capillary from the crystallization droplet for X-ray data collection at 0 °C. X-ray data were collected on an Raxis IIC image plate and processed using software provided by the manufacturer (Molecular Structures Corp. Woodlands, Texas). The crystal had space group symmetry P43212, with unit cell dimensions a = b = 64.4 Å, and c = 162.7 Å. R-merge for the data was 8.9%, with I/sig(I) = 2.3 at 2.6 Å resolution. The structure was solved by difference Fourier techniques using coordinates for a previous structure (Brookhaven entry 1ICE) solved in the same space group. The structure was refined against 7219 reflections (F>1sF) in the 7.0-2.6 Å resolution shell (85% completeness) to a R-factor of 18.1%, with deviations from ideal bond lengths and angles of 0.011 Å and 2.9°, respectively. Model refinement was carried out using the XPLOR suite of programs [Bruenger, A. T. (1992) X-PLOR version 3.1 Manual (Yale University Press, New Haven, CO).
- 16. A crystal of compound 11a in complex with ICE was grown using similar conditions as compound 8a, and X-ray data was collected and processed in the same manner. The crystal had unit cell dimensions a = b = 64.2 Å, and c = 162.8 Å. A total of 30790 observations of 13324 unique reflections were measured with an overall agreement (R_{sym}) of 8.1% on intensities and completeness of 89% to 2.7 Å. Data to 2.2 Å was included in the refinement, but the completeness in the shells beyond 2.7Å was limited to 40% due to anisotropy in the diffraction pattern. The structure was refined using X-PLOR to a R-factor of 20.2% versus 12597 reflections (F>1sF) between 7-2.2 Å, with deviations from ideal bond lengths and angles of 0.009 Å and 2.7°, respectively.
- 17. All new compounds were characterized by ¹H NMR and purity determined (>95%) by reverse-phase HPLC. Compound 8: ${}^{1}\text{H NMR (CD_3OD)}$ δ 8.32 (1H, d, J = 7.5), 7.19 (6H, m), 6.34 (1H, t), 5.1–4.6 (3H, m), 4.32 (1H, m), 2.7 (6H, m). Compound 8a: ¹H NMR (DMSO- d_6) δ 8.96 (1H, d, J = 7.3), 8.34 (1H, s), 7.85 (1H, dd, J = 7.3), 7.58 (3H, m), 7.35 (5H, m), 6.29 (1H, t, J = 7.3), 5.26 (2H, m), 5.15 (2H, s), 4.69 (3H, m), 2.75 (2H, m). Compound 9: ¹H NMR (CD₃OD) δ 8.28 (1H, d), 7.35 (1H, d), 7.20 (5H, m), 6.36 (1H, t), 5.49 (1H, q), 4.59 (1H, t), 4.25 (1H, m), 2.98, 2.74 (2 x 2H, 2 x m), 2.59 (2H, m), 1.57 (3H, d). Compound 10: ¹H NMR (CD₃OD) δ 8.36 (1H, d), 7.49–7.14 (10H, m), 6.27 (1H, dd), 4.54 (3H, m), 4.30 (1H, m), 3.0, 2.73 $(2 \times 2H, 2 \times m), 2.7-2.29 (2H, m)$. Compound 11: ¹H NMR (CD3OD) δ 8.25 (1H, d, J = 7.7), 7.25 (10H, m), 6.15 (1H, 2d, each J = 7.7), 4.73 (2H, 2q), 4.59 (1H, m), 4.30 (1H, m), 3.95 (2H, s), 2.98 (2H, m), 2.75 (2H, m), 2.8-2.42 (2H, m). Compound **11a**: ¹H NMR (DMSO- d_6) δ 9.24 (1H, s), 8.88 (1H, d, J = 7.6), 8.18 (1H, d, J = 7.7), 7.60 (3H, m), 7.26 (10H, m), 6.06 (1H, d, J = 7.7), 5.23 (2H, ABq), 4.69 (3H, m), 3.93 (2H, s), 2.78 (6H, m). Compound 12: ¹H NMR (CD3OD) δ 8.18 (1H, d, J = 7.8), 7.22 (10H, m), 6.15 (1H, d, J = 7.8), 4.75 (2H, s), 4.58 (1H, m), 4.30 (1H, m), 3.01-2.28 (10H, m). Compound 13: ¹H NMR (CD_3OD) δ 8.19 (1H, d, J = 7.6), 7.19 (5H, m), 6.21 (1H, d, J = 7.6), 4.80 (2H, m), 4.59 (1H, m), 4.30 (1H, m), 2.98 (2H, m), 2.72 (2H, m), 2.80–2.40 (2H, m), 2.30 (3H, s). Compound 14: ¹H NMR (CD₃OD) δ 8.22 (1H, d, J = 7.8), 7.24 (5H, m), 6.22 (1H, d, J = 7.8), 4.80 (2H, m), 4.60 (1H, s), 4.28 (1H, m), 2.98 (2H, m),2.72 (2H, m), 2.58 (4H, m), 1.48 (4H, m), 0.97 (3H, t, J = 7.1). Compound 15: ¹H NMR (CD₃OD) δ 8.23 (1H, m), 7.27 (10H, m), 6.28 (1H, m), 4.84 (1H, m), 4.53 (1H, m), 4.22 (1H, m), 4.10 (2H, m), 2.96 (2H, m), 2.72 (2H, m), 2.39 (2H, m), 1.21 (3H, m). Compound 16: ¹H NMR (DMSO-d6/CDCl₃) δ 8.16 (1H, d, J = 7.7), 7.26 (5H, m), 7.03 (2H, d, J = 8.4), 6.61 (2H, d, J = 8.4), 6.03 (1H, d, J = 7.7), 4.58 (3H, m), 4.44 (1H, m), 4.13 (1H, m), 3.84 (2H, s), 3.07-2.30 (4H, m).
- Damewood, Jr., J. R.; Edwards, P. D.; Feeney, S.; Gomes, B. C.; Steelman, G. B.; Tuthill, P. A.; Williams, J. C.; Warner, P.; Woolson, S.A.; Wolanin, D. J.; Veale, C. A. J. Med. Chem. 1994, 37, 3303.
- 19. Chapman, K. T. Bioorg. Med. Chem. Lett. 1992, 2, 613.
- Thornberry, N. A.; Peterson, E. P.; Zhao, J. J.; Howard, A. D.; Griffin, P. R.; Chapman, K. T. *Biochemistry* 1994, 33, 3934.